
Abstract- This preliminary study quantifies and provides one
explanation for the extent of modiolar stimulation observed as a
function of current level as recorded in a population of Inferior
Colliculus units. . The Inferior Colliculus units were driven by scala
tympani bipolar charge balanced stimulation.
Keywords: Cochlear Implant, Inferior Colliculus, Modiolar
Stimulation

I. INTRODUCTION

Cochlear implants are used to provide hearing sensation to the
sensoneurally deaf. Bipolar electrical stimulation of a scala
tympani cochlear implant produces a localized stimulus which has
been measured to diminish at about 9dB/octave [1].

Blamey et al. (1994) describes both a perceived low frequency
shift by cochlear implant patients in response to high stimulus
levels and a perceived lower pitch for place of electrical
stimulation when compared with acoustic stimulation on the
opposite side. Modiolar stimulation is likely the cause. Frijns
(1995) and Briaire (2000) have modeled the field excitation
patterns for scala tympani bipolar electrical stimulation and
predicted excitation of the modiolus at higher current levels.

This preliminary study aims to quantify and explain the extent
of modiolar stimulation as a function of current level as recorded
in a population of IC units driven by scala tympani bipolar charge
balanced stimulation.

II. METHODOLOGY

Cats (2-4kg)  were  anaesthetized  with KetamineTM (40mg/kg,
i.p) and RompunTM (30mg/kg, i.p). The anaesthetic level was
maintained by supplementary doses of Nembutal (5-10mg/kg,
i.v). Feline versions of the multichannel bipolar
Melbourne/Cochlear scala tympani electrode array were
implanted into a NeomycinTM deafened cochlea. The contralateral
cochlea was Neomycin deafened, implanted and electrically
stimulated whilst the ipsilateral cochlea was left intact. A
craniotomy was carried out rostral to the tentorium, and the
inferior colliculus exposed by aspirating the overlying occipital
lobe. Recording microelectrodes were placed in the inferior
colliculus. Stimuli were 40ms bursts of biphasic charge balanced
(l00µs/phase) electric pulses (250 pulses/s). Electric stimuli were
presented as pulse trains at constant current levels.

Unit threshold was established. If no driven response was
detected at a particular current  level the current was increased in
1 dB steps up to a maximum of 2.5mA. If a driven response was
detected the current level was decreased in 1 dB step to establish

response threshold. At each threshold point the measurement was
repeated until two reproducible threshold values were obtained.
Threshold determining stimuli were bursts of electric pulses or a
single electric pulse. The firing rate in the interval 0-120 ms post
stimulus onset was compared with the firing rate in the 120 ms
prior to stimulation. These firing rates were summed over the 10
bursts in each stimulus packet. A driven response was defined,
either as a 10 % increase in firing in the driven interval compared
to the non driven interval or, for very low or zero spontaneous
rate units, an increase of 5 spikes per stimulus packet for the
driven region as compared to the non driven region of the
response. For a small number of units the automated program
failed. In such cases a manual procedure, based on a visual
assessment of an increase in firing rate, was used. Automated
threshold measurements were checked manually for each unit and
recorded to an accuracy of +1 dB respectively.

The care and use of animals reported on in this study were
approved by the University of Melbourne Animal
Experimentation Ethics Committee and the Royal Victorian Eye
and Ear Hospital Animal Research Ethics Committee.

III. RESULTS

Figure 1 upper plot shows as a function of stimulus level the
number of contralaterally electrically driven units (n=66),
expressed as a fraction of the control acoustic population in each
bin, versus their CF. Stimulus level is measured as a dB
attenuation re a 2.5mA current level. Electrodes were located in
the 2-5kHz bin. For attenuation levels less than 12dB there is
evidence of modiolar stimulation in the 0.5-1 kHz CF bin. The
contralateral acoustic plot was obtained from 116 IC units
recorded using contralateral acoustic stimulation of an intact
cochlea. For electrical stimulation there is a relatively localized
stimulation from threshold up to 6-9dB of attenuation (with some
localized modiolar stimulation). At higher stimulus levels most IC
units representing most of the cochlea or its projections are being
driven by either modiolar stimulation or by stimuli local to the
electrode pairs.

Figure 2 shows, compared acoustic unit type distributions,
there is a new sharp peak (0.5-1 kHz bin) in the electric driven
EO unit CF distribution. Each peak corresponds to the immediate
cochlear turn above the stimulating electrode pair.

IV. DISCUSSION

There are short distance relatively low impedance current paths,
for example, via the habena perforata from the stimulating
electrodes to the modiolus in which are located spiral ganglion
cells from lower CF upper turns of the cochlea (Figure 3). In the
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modiolus the spiral ganglion cells of the immediate cochlear turn
above the stimulating electrodes are nearest the stimulating
electrodes [5]. If modiolar stimulation was responsible for
generating a driven response from low CF units, cochlear implant
patients would note a low frequency shift at high current levels,
the average latency of these low CF units might be shorter than
middle to high CF units and, for electrically driven units,
theremodiolar stimulation evoked peak in the unit distribution as
a function of CF. This peak should correspond to the immediate
cochlear turn above the stimulating electrode pai
r. All these observations are seen in figures 1 and 2 and from
Blamey et al. [2] and Lithgow [8].

Why is there an apparent enhanced response to electrical
stimulation when compared to that evoked by acoustic stimulation
proximal to the electrodes and at the site of peak modiolar
stimulation (figure 1)?

Silverman and Clopton (1977) suggest that the relative
efficacies of ipsilateral and contralateral projections to the IC are
mediated by acoustic activation and established on a competitive
basis. In a monaurally deafened situation the spontaneous input
would be lower from the deafened side. This may result in the
unit becoming more depolarised prior to stimulat
ion (ie. a pre-stimulus threshold shift). Möller (1995) proposes a

Figure 1 shows the number of units expressed as a population percentage (n=66) of contralateral driven units that showed a driven
response to the applied electrical stimulus versus their CF.
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Figure 2. Plot of acoustic driven EO unit population versus CF (left) and contralateral electric driven EO unit population versus CF
(right).
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similar model. This may mean a "weak" excitatory stimulus
normally unable to evoke an excitatory response might be capable
of doing so.

There is a body of evidence that supports the concept of a pre-
stimulus threshold shift [6], [12]. Keeping in mind the
fundamental difference between neonatal cochlear ablation and
neomycin deafening, the Kitzes and Semple (1985) study showed

An alteration in the spontaneous rate of units underlies the
concept of pre-stimulus threshold shift. However, spontaneous
rates are low in anaesthetised compared to non anaesthetised a
nimals [9], [10] and may be even low
er for inhibitory compared to excitatory inputs [11].
Consequently, caution must be exercised before adopting the pre-
stimulus threshold shift hypothesis. This issue is addressed below
by considering the mechanism of pre-stimulus threshold shift.

An ICC unit pre-stimulus threshold shift could be mediated
locally, on a competitive basis, by inputs to the ICC unit [7].
These inputs can be effected by efferent feedback paths. Most
efferent fibres in the olivocochlear bundle originate in the medial
and lateral ovilocochlear regions [13]. These fibres are believed
to have inhibitory terminals on the bases of outer hair cells and on
the dendrites of afferent Type I spiral ganglion cells respectively
[13], [14]. Liberman and
Brown (1986) have shown 89 % of their sample (predominantly
monaural units) of medial olivocochlear efferents had zero
spontaneous rate. This lack of spontaneous activity means medial
olivocochlear efferents are unlikely to play a major role in
facilitating a pre-stimulus threshold shift upon outer hair cells.
(The electric stimulus bypasses this inhibitory effector). In
contrast lateral superior olive units (Figure 4) are predominantly

IE (ipsilateral) or EI (contralateral) and have a robust
spontaneous discharge in decereberate cats (Brownell, 1979).
Compared to C(acoust)I(acoust) stimulation, for contralateral or
ipsilateral electric stimulation with the opposite side intact
(Figure 4), the crossed lateral superior olive, as a result of the
reduction in relative spontaneous rate to the inhibitory input of its
EI units could output a stronger inhibitory projection onto
afferent fibres prior to stimulus onset. Similar arguements suggest
the inhibitory effects of the dominant ipsilateral lateral superior
olive efferent projection on afferent cochlear projections may be
diminished. The overall result will be a slightly reduced
inhibitory influence on afferent cochlear projections. This may
mean a lower stimulus level may be required to evoke an
excitatory response and this may be reflected as a less inhibited
response for ICC units receiving input from these projections.

Why is there an apparent reduced response to electrical
stimulation when compared to that evoked by acoustic stimulation
basal to the electrodes (figure 1)?

The anatomy of the cochlea is such that the physical distance
from the scala tympani to the modiolus is much larger at the
extreme basal end of the cochlea than in the basal or mid regions
of the cochlea. This would limit modiolar stimulation.

V. CONCLUSION

Modiolar stimulation can evoke responses in IC units at low
stimulus levels. Modiolar stimulation is often more effective

Figure 4. The proposed superior olive efferent influences prior
to stimulus onset.  Unit types are EI (crossed) or IE (uncrossed).
{Arrows above projections indicate either an increase or
decrease in inhibitory (I) influence on outer hair cells for medial
olivocochlear projections (MOC) and on afferent fibres
projecting from the cochlea in the case of lateral olivocochlear
projection (LOC). The C-LSO and U-LSO are respectively the
crossed and uncrossed Lateral Superior Olives. The overall
effect on the excitatory (E) afferent ascending projection is
shown.

Figure 3. Diagram shows the anatomical relationship of the
modiolar fibres of upper turns to the site of electrical
stimulation. The diagram is a diagramatic representation of the
spread of current to the modiolus at various increasing stimulus
levels.
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apical to the electrode pair. A consideration of cochlea anatomy
and pre stimulus threshold shift might provide one explaination
for this finding.
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